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Abstract-Vaporization of liquid O2 droplet in quiescent high-temperature and high-pressure H2 gas is 
numerically investigated. Classical thermodynamic modeling of high pressure mixtures allows us to study 
the transition from subcritical to supercritical vaporization regime. It is observed that subcritical vapo- 
rization can be obtained up to pressures several times the oxygen critical pressure. Respective domain of 
both regimes is determined vs temperature and pressure. Border region corresponds to minimum value of 
droplet lifetime. This results from two cooperative phenomena: transient effect and thermodynamic 
property of mixtures. Sensitivity analysis additionally shows that state of art in dense fluid transport 
modeling yields results that should be considered accurate only as far as orders of magnitude are concerned. 
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1. INTRODUCTION 

Droplet vaporization and combustion at high pressure 
are involved in many practical engines. In several 
industrial applications (like diesel engines, rocket 
engines) the pressure of the combustion chamber is 
even higher than the critical pressure of the fuel. To 
achieve optimal design, further investigations are 
required in the field of droplet vaporization and com- 
bustion in supercritical regime. This theme has been 
the subject of particular attention over the past few 
years in the field of experiments [ 1,2] as well as theor- 
etical approaches [3-51. 

Previous theoretical investigations by Spalding [6], 
Rosner [7], Sanchez-Tarifa et al. [8], Lazar and Faeth 
[9] and Rosner and Chang [lo] have shown that dur- 
ing the vaporization or combustion a droplet can 
approach and exceed its critical point when ambient 
pressure is sufficiently high (of the order of twice the 
critical pressure of the pure component of the droplet). 
It has been pointed out that specific high pressure 
phenomena like solubility of ambient gases in the 
liquid phase, thermodynamic non idealities and prop- 
erty variations cannot be neglected in studies of drop- 
let vaporization in near critical conditions. These 
works have been the subject of review articles by Law 
[l l] and Sirignano [12]. 

Successive numerical investigations by Manrique 
et al. [13], Curtis et al. [14] and Scherrer [15] have 
considered this problem with an increasing complexity 
of thermodynamic model for liquid-vapour coexist- 
ence. Hsieh et al. [16] have provided an analysis of 
droplet vaporization that can correctly study the near 
critical vaporization process. One can also find in Far- 
rel et al. [17], Litchfort et al. [18] and Delplanque et 
al. [S] thermodynamic models that have permitted the 

approach of high pressure regimes. More recently, 
Curtis et al. [3] and Yang et al. [19,20] have extended 
previous works [14, 161 to higher temperature and 
pressure environment. Among those contributions, 
references [19] and [20] contain results useful for the 
sake of quantitative comparison with the present 
work. 

Our purpose is to furnish a deeper insight into both 
subcritical and supercritical regimes. The inves- 
tigation is carried out in the framework of cryogenic 
rocket engines : we are concerned with the numerical 
study of an isolated droplet of liquid oxygen (LOX 
droplet), in a stagnant hot gas composed of hydrogen. 
We scan a pressure range much higher than the critical 
pressure of pure oxygen. The cryogenic droplet heated 
by the ambient gas, vaporizes while the surface tem- 
perature increases. The present work provides the con- 
ditions (pressure and ambient temperature) for which 
the interface disappears during the droplet lifetime, 
i.e. critical state is reached at the droplet surface. 

A few words are also given about the ways the 
droplet surface crosses the mixture critical conditions. 
Because of the large influence of the selected transport 
models, we restrict the description of the transition 
to a qualitative aspect. However careful attention is 
numerically devoted to this aspect, because the tran- 
sition may be non-trivial (as the fact that latent heat 
vanishes at critical state seems to indicate). 

Our high pressure modeling contains obvious weak 
points. We consequently perform sensitivity analysis 
to the selected models. Furthermore, droplet lifetimes 
which strongly depend on transport properties in both 
domains (subcritical and super-critical) are quan- 
titatively studied. We have conducted a rather large 
amount of parametric studies that allow us to propose 
physical interpretations of the observed phenomena. 
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NOMENCLATURE 

partial specific heat of species i 
molecular diffusivity of O2 in the 
mixture 

Y 

Y, 

molecular diffusion coefficient of 
species i in the mixture 
partial enthalpy of formation 
mass diffusive flux of species i 
mass flux of species i 
Lewis number (ti/D) 
vaporized mass rate per unit area 

Greeks 
K 

i 

P 
Thfr 
r, 

mass fraction of 0, 
mass fraction of species i. 

thermal diffusivity 
thermal conductivity 
density 
non-dimensional droplet lifetime 
thermal diffusive time. 

heat flux required for phase change 
chamber pressure 
space variable 
time 
droplet lifetime 
temperature 
initial temperature in the liquid 
flow radial velocity 

Subscripts 
i value of species i (i = O2 or H2) 
C critical value 
liq liquid value 
S interface value 
vap vapour value 
0 values at initial time 
CxI or inf values at r = co. 

1 

As a matter of fact, our results at high ambient tem- 
perature show a close similarity with experiments of 
droplet combustion by Faeth et al. [21], Sato et al. [ 1, 
21 and Chauveau et al. [22] : the droplet lifetime exhi- 
bits a minimum when pressure becomes such that 
subcritical regime is no longer allowed. Because this 
minimum value is observed at the transition between 
both regimes we have called this effect “transcritical 
minimum”. We propose an attempt to interpret this 
phenomena. 

2. THE MODEL 

We consider a single, spherical, cold droplet of O2 
heating up and vaporizing in a quiescent hot Hz 
environment at high pressure, as in zero gravity exper- 
iments. Initially, the pure liquid droplet (of radius rO) 
has a uniform temperature T, (100 K) and is sur- 
rounded by a hot ambient gas, at temperature T, (in 
the range 500 K-2500 K). The droplet vaporization 
process produces a Stefan flow. The velocity of this 
flow has a negligible magnitude compared with the 
speed of sound. Therefore isobaric hydrodynamics is 
assumed. The modeling follows the classical ther- 
modynamic procedure, except for mixture heat 
capacity that requires special attention. This is one of 
the weak points of the model. The other ones are 
related to transport coefficients in dense mixtures for 
which kinetics theory of gases is no longer valid. 

2.1. Model for subcritical vaporization regime 
At a given pressure and for the equation of state 

p = f(T, Y), the problem is to find the conditions for 
the existence of an interface by solving : 

(i) the spherical temperature field determined as 
solution of 

where C,, is the partial specific heat of species i. There- 
fore specific heat of the mixture is given by 

where Y, is the mass fraction of species i. 
J&t-> the mass diffusive flux of species i is defined 

by the Fick law 

J&E = - PD,, QY, (3) 

where Di, is the molecular diffusive coefficient of spec- 
ies i in the mixture ; 
(ii) the oxygen mass fraction field determined as a 

solution of 

=~*(pD~Y) (4) 

Y and D are the mass fraction and the molecular 
diffusive coefficient of the species 0, in the mixture, 
respectively ; 
(iii) the radial velocity field, or Stefan flow, governed 
by the mass conservation equation 

$+v.(pP) =o 
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where p is given by classical cubic equation of state 
for mixtures [23]. 

At the droplet surface the matching conditions are : 
* the mass balance for the mixture : 

m = Pliq(Ts> Ys>(Uliq(rs)-drs/dt) (6) 

= ~vrp(Ts> Ysk&J -drs/ W 

* the energy balance : 

where the quantity m*L(T,, Y,) refers to the energy 
flux transferred through the interface, in order to pro- 
vide the enthalpy of vapour phase formation. This 
global quantity is related to partial enthalpies and 
total species mass fluxes by 

- m*UT, r) = (kap,o, - h;iq.O,)JO, 

with 

+ @vap.~, -h;,,,,&b, (8) 

J, = my,--p(T, y)D,,z (9) 
4 

* the balance of oxygen mass : 

(10) 

* the liquid-gas interface (or droplet surface) is the 
locus where the thermodynamic equilibrium con- 
ditions are met for the mixture. This appears as a 
coexistence relationship between, for instance, the 
three following quantities : 9’(P, T,, ( YJvap) = 0. We 
derive the latter equation from thermodynamic model 
in the following classical way [23]. The Redlich- 
Kwong-Soave cubic model for pure component is 
firstly chosen. Then, using classical rules for mixtures, 
an equation of state for binary mixture is derived. The 
phase equilibrium relationship at interface is after- 
wards obtained by specifying that temperature, pres- 
sure and fugacities of each species are identical in both 
phases. The model is now complete because fugacity 
and partial enthalpy of formation can be expressed 
as functions of the mixture equation of state. The 
equilibrium liquid-vapour diagram of the Hz-O, mix- 
ture is plotted on Fig. 1, for several pressure values. 
There is however no experimental data for validating 
this thermodynamic modeling. Nevertheless, exper- 
imental data can be found for the H2-N2 cryogenic 
mixture that is close to the present one. A good agree- 
ment has been noticed [5, 241 for the Hz-N2 mixture 
between experimental data and classical ther- 
modynamic modeling. 
* The boundary conditions to be satisfied are 

at r=cc T=T, Y=O 

0.6 
90 100 110 120 130 140 150 

TEMPEFWURE (K) 

Fig. 1. Diagram of liquid-vapour equilibrium in the plane 
“temperature/O, mass fraction” for 02-H, mixture at a given 

pressure. 

at Y = 0 ar,,,/ ar = a Y,,qj ar = 0. 

* Most of transport properties of the pure fluids O2 
and H, are evaluated from Gas Encyclopaedia [25]. 
For estimating C,, the mixture heat capacity, relation 
(2) is used with two different ways of evaluation of 
C,,, the partial heat capacities of species i in the 
mixture. On the one hand, from the mixture equation 
of state it is possible to derive a theoretical expression 
of CP, [26]. This way presents however a major draw- 
back which corresponds to the limitation of such a 
thermodynamic modeling : for a given pressure there 
is a particular mixture composition, called mixture 
pseudo-critical point, for which the quantities C,, 
diverge. This approach remains practicable as long as 
the actual composition and temperature fields are in 
such a way that no space point meets the vicinity of 
the pseudo-critical conditions. On the other hand, in 
order to overcome the latter drawback, relation (2) 
can be used by identifying the partial heat capacities 
with the heat capacities of each pure substance. Those 
have been extracted from [25]. Actually this procedure 
corresponds to an acceptable approximation except 
in the vicinity of the critical conditions of pure sub- 
stances at which the value again diverges. This is the 
reason why we have preferentially performed the 
study when this singular behaviour is erased. This 
leads to the so-called “smoothed C,,” results. 
Additionally, for the sake of sensitivity study, we shall 
furnish further comparisons when perfect gas assump- 
tion for heat capacities is assumed. 
* Let us now consider the transport modeling which 
also contains several weaknesses. Firstly, for the time 
being and as all previous contributions, we do not 
take into account any of the singular behaviours [27, 
281 of transport coefficients in the vicinity of the mix- 
ture critical conditions. Furthermore there are several 
orders of magnitude between binary diffusion 
coefficients in liquid and gas. Therefore it seems 
impossible, due to the lack of experimental data, to 
perform a continuous modeling (when liquid-vapour 
interface disappears) that would connect a gas-like 
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fluid to a liquid-like fluid. Consequently we have used 
for binary diffusion coefficient, in liquid and dense 
gas, empirical correlations that can be found in ref- 
erence [23]. As for thermal conductivity, we have used 
standard mixing rules [29] applied to the values of 
pure substances established from experimental data. 
Mixture thermodynamic and transport property 
evaluation methods are summarized in Appendix. 

Our present problem, that can be called ‘Stefan 
problem in mixture’, presents some technical diffi- 
culties : the localization of the interface, conceived as 
a free surface, requires dynamical adaptation of grid 
and a space-time transformation of mesh. Numerical 
solution is achieved by using a second order space- 
time discretization. The global scheme is implicit and 
carried out in the framework of finite volume methods 
[30]. Furthermore, cl,, the gas flow velocity at the drop- 
let surface and one of the thermodynamic quantities 
at the interface have to be seen as ‘eigenvalues’ of 
the problem. Hence, at each time step, a numerical 
algorithm involving Newton-Raphson iterative tech- 
nique is used to solve the differential system completed 
by the set of equilibrium relationships at interface. 
Therefore, at each time step the iterative procedure is 
stopped when regression rate and surface temperature 
have converged. 

2.2. Modelfor the supercritical vaporization regime 
If the critical point of the binary mixture (which 

only depends on the chamber pressure) is reached 
during the regression of the droplet, the interface van- 
ishes. From this instant on, integration of con- 
servation laws is carried out continuously from the 
droplet centre to the quiescent infinity. Unlike the 
subcritical vaporization where temperature field and 
mass fraction field have to satisfy at the interface 
the constraint of liquid-vapour coexistence, in the 
supercritical regime no particular relationship is 
imposed to both fields. The numerical problem is then 
reduced to a spherical convectiondiffusion problem 
in a single fluid phase. The vaporization process can 
be seen either as a heating process or a mixing process. 
According to our interest relative to these processes, 
we can define the supercritical droplet as follows. On 
the one hand, if we consider the transformation of a 
cold ‘puff in a lighter fluid, we shall retain as droplet 
border the locus where the temperature is the mixture 
critical one (i.e. T, = TJ. On the other hand, if we are 
interested in mixing process, preceding combustion 
for instance, we shall define as droplet the loci where 
the O2 mass fraction is higher than Y,, the mixture 
critical value (i.e. we set Y, = Y,). 

For the sake of comparison with vaporization 
experiments in presence of combustion we select the 
point of view of mixing. In that case, from the critical 
instant on, we shall follow the locus where Y, = Y, in 
order to determine the droplet radius. 

3. RESULTS 

We have performed an extensive study of both 
vaporization regimes with respect to the most impor- 

tant parameters, i.e. temperature and pressure of 
chamber. Particularly, we focus our attention on the 
dependence of droplet lifetime on pressure. The reason 
for this interest is due to several experiments by Faeth 
et al. [21], by Sato et al. [l] and very recently by 
Chauveau et al. [22]. These authors have observed 
that a minimum of the droplet lifetime in presence of 
combustion is attained for pressures in the vicinity of 
the fuel critical pressure. Although these experiments 
dealt with hydrocarbons, our purpose is to suggest 
physical interpretations for these observations. 

We shall call subcritical regime the vaporization 
process for which the mass fraction at interface 
remains higher than the mixture critical value (and 
consequently, the surface temperature remains lower 
than the corresponding critical temperature) during 
the whole droplet lifetime. On the other hand, the 
“supercritical regime” will correspond to a vapo- 
rization process for which the subcritical period lasts a 
negligible part compared with whole droplet lifetime. 
The latter case typically appears in a chamber at high 
pressure and high temperature. 

Most of our results will be presented in non-dimen- 
sional form. It is worth noticing that elementary 
dimensional analysis yields the following obviousness. 
The unique time scale that can be built from the physi- 
cal parameters of this problem has the form : 

~~ = ri/D (11) 

where D is a typical diffusion coefficient. We shall set 
D = ti, K being the thermal diffusivity of the hot gas 
phase far from the droplet. Therefore, the Vashy- 
Buckingham theorem (or II-theorem) allows us to 
write tchar, any characteristic time, as : 

fchar = t,~(n,,n,,n,,...,f;,J;,.~,...) (12) 

with 5, = t-i/K and where the Iii are non-dimensional 
numbers like the Lewis number, the ratio of gas and 
liquid densities, the ratio of enthalpy of formation to 
some energy of reference, etc. The functionsf, are non- 
dimensional fields traducing the non-constancy of the 
physical properties. As illustration, note that the 
classical Godsave [31]-Spalding [33] formula for ros, 
the droplet reduced lifetime, just requires two numbers 
II, and II,. In this manner it reads : 

ZGS =@(l-I,,rI,) =;n,[log(l+IIz>]-’ (13) 

where II, is the ratio of the liquid density to the gas 
density and II2 is nothing but the Spalding number. 
Note moreover that the dependence of Q, on II, is a 
slow varying function provided that ITI, is sufficiently 
large ; the latter condition is fulfilled with a high tem- 
perature environment. 

3.1. Subcritical regime 
This regime naturally appears at low pressure and 

has been the subject of a large number of important 
contributions [31-331 that have established the quasi- 
steady vaporization model. Furthermore several 
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Fig. 2. T,, the interface temperature vs non-dimensional time 
(To = 100 K, T, = 1000 K, P = 8 MPa) : subcritical case. 

theoretical works [7, 10, 321 have stated that the more 
the pressure increases the more questionable is the 
assumption of quasi-steadiness. Our purpose is to 
quantitatively determine the existence domain of sub- 
critical regime for LOX droplets. We shall also try to 
qualify the degree of unsteadiness in this domain. 

As illustration, we present results obtained when a 
liquid O2 droplet, initially at 100 K, evaporates in a 
chamber at 80 bars and 1000 K. First of all, note that 
the mixture critical temperature at 80 bars is 147 K, 
accordingly to Fig. 1. The numerical simulation shows 
that the temperature of the droplet surface increases 
continuously from 100 K to 146.5 K, as seen on Fig. 
2 where time is normalized by z,, the thermal diffusion 
characteristic time (here r, z 6 x 10m4 s for r, = 100 
pm). The highest temperature value is obtained at the 
end of the droplet life-that we conventionally define 
as the instant when 97% of the initial liquid mass is 
evaporated. This value of 146.5 K is very close to the 
critical value: the interface temperature reaches the 
critical value just at the end of its lifetime. These 
results confirm that at high pressure no quasi-steady 
state exists [3, 5, 16, 321. Nevertheless, our simulation 
proves that the famous “D’ law” remains valid during 
an important part of the vaporization period. This 
fact can be observed in Fig. 3 where the quantity 

0 5 10 15 20 25 30 35 
non-dimensional time 

Fig. 3. Validity of the “D* law” in the subcritical regime: 
time derivative of droplet radius multiplied by radius is plot- 
ted versus non-dimensional time (T,, = 100 K, T, = 1000 K, 

P = 8 MPa). 
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Fig. 4. “Trajectories” of the scalar fields in the (T, y) diag- 
ram. Curves are respectively the solutions after 1, 6 and 33 

timeunits(T,= lOOK,T,= lOOOK,P=8MPa). 

r,*dr,/dt is plotted vs non-dimensional time. From 
time t = 6 on, this quantity appears as quasi-constant. 
Note that at t = 6 less than 20% of the liquid mass is 
evaporated. Consequently, we can consider that some 
degree of quasi-steadiness is attained. 

Umemura [27,28] has suggested presenting the his- 
tory of the vaporization with the help of a set of curves 
in the (T, I’) diagram. This is carried out, at a given 
instant, by eliminating r, the space variable, between 
the temperature and mass fraction instantaneous 
fields. Figure 4 presents, at three different instants 
(t = 1, t = 6 and t = 33), the characteristic states of 
the mixture (temperature and O2 mass fraction), to- 
gether with the liquid-vapour coexistence curve. 
Below this dotted curve, the state corresponds to the 
gaseous phase, while above the mixture is in the liquid 
state. As time increases, the surface conditions get 
closer to the mixture critical conditions as illustrated 
on Fig. 4 by the curve at time t = 33 which cor- 
responds to the end of droplet lifetime. 

At this point it is important to estimate how far the 
low pressure model by Spalding and Godsave can be 
usable. In this way, we need to establish what is the 
Spalding number in our problem. We decide to define 
this number as follows : 

B= n2 =(C,),(T,-(T,>)‘[(c,),is((T,)-TO) 

+ (m*L>/<m>l-’ (14) 

where the symbol (a) means the time averaged value 
of respectively, T, the surface temperature, m*L the 
heat flux required for phase change and m the vapo- 
rized mass of liquid. Rough estimate of equation (14) 
from our numerical results (always for p = 80 bars 
and T, = 1000 K) gives : B = 64. Reported in equa- 
tion (13), this quantity, together with II, = pliq/ 
pm = 600, leads to a non-dimensional droplet life- 
time r&r = 0.3) = [1 - (0.3)*]2& = 0) = 65. This 
value compared with 33, the numerical result, 
shows that equation (13) almost preserves the order 
of magnitude of the lifetime. Further comparisons 
show that the Godsave-Spalding model, although it 
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Fig. 5. Interface temperature at the end of droplet lifetime vs 
pressure for several temperatures of chamber. The solid line 
is the projection on the (P, T) plane of the 0,-H, mixture 

critical line. 

assumes the constancy of all physical properties, is 
nevertheless an acceptable guide (if (r,) is known!) 
for predicting the qualitative behaviours in the sub- 
critical regime. 

A parametric study of the subcritical domain has 
been carried out for various pressures and tem- 
peratures of the chamber. In Fig. 5, the final surface 
temperature of all subcritical regimes is reported with 
respect to pressure. We observe that the final surface 
temperature increases with pressure until the rep- 
resentative point (P, TJ intersects the projection of 
the mixture critical line on the (P, T) plane. Retaining 
on Fig. 5 the intersection point of each curve with the 
projected critical line, we obtain for a given sur- 
rounding temperature the pressure corresponding to 
the limit of the subcritical vaporization domain. This 
allows us to plot on Fig. 6 the curve (solid line) lim- 
iting the subcritical domain. Of course this curve is 
very sensitive to the modeling. In order to illustrate 
this point, we have considered two opposite modelings 
of mixture heat capacity. On Fig. 6 the already men- 
tioned solid line corresponds to the application of 

SUPERCRllTCAL DOMAIN 

T_ W) 

Fig. 6. Transcritical pressure vs temperature of chamber (i.e. 
conditions of chamber for which critical state is attained just 
as the droplet disappears) : sensitivity analysis with respect 

to both modelings of mixture heat capacity (see text). 

equation (2) with heat capacities of pure substances 
obtained from experimental data [25]. On the other 
hand, the dashed line on Fig. 6 results from the same 
computation with a gas phase owing the heat capacity 
of perfect gases. Although the discrepancy is relatively 
large (20%), the following qualitative result seems to 
be quite robust: subcritical regime can be observed 
for ambient pressures much higher than the critical 
pressure of pure oxygen. The latter point is in agree- 
ment with previous works [5, 7, 20, 341. 

3.2. Trunsition to supercriticul regime 
According to the selected transport modelings, we 

can observe two ways for crossing the critical 
conditions. One way exhibits a weak singular behav- 
iour. Its appearance is very sensitive to all the weak 
points of the modeling, and because it does not quan- 
titatively affect the droplet lifetime, we shall content 
ourself with a qualitative description of the transition 
from the subcritical regime to the supercritical one. 

From the numerical point of view, the closer the 
droplet surface approaches the critical conditions, the 
more iterations are needed to obtain at each time 
step the convergence of the numerical procedure. At 
a certain discrete time (say, t = [n + 1] At) this iterative 
procedure no longer converges. We then have the 
temptation to decide that the last subcritical time is 
t = n At and the first supercritical instant is 
t = [n + 1] At. However, this deserves more attention 
because the regression rate can strongly increase as 
we approach the critical conditions. To properly treat 
the transition, we decide to proceed as follows. If at 
t = [n+ I] At no convergence is found for the iterative 
system, we choose a half time step and we try to find 
convergence at t = [n + l/2] At. By acting recursively, 
we can approach closer and closer the transition. We 
built a series of time increments the sum of which 
converges towards t,, the critical instant. 

As a result, during this iterative procedure we 
observe two distinct behaviours. When the transport 
coefficients are really discontinuous on both sides of 
the interface, the transition appears as a regular 
phenomenon. Conversely, if the transport coefficients 
are more or less continuous, as it could be envisaged 
when tending to a unique fluid phase, we have 
observed a singular behaviour: the regression rate 
weakly diverges at the finite time tc. More precisely, 
we found that dr,/dt behaves as (t,- t)-” with a a 
small exponent of order 0.1. Moreover, Umemura has 
pointed out that binary diffusion coefficient vanishes 
[27,28] at critical point. We have studied the influence 
of the latter property. The result is striking in the sense 
that the vaporization rate is found to remain finite 
during all the transition. 

3.3. Supercritical regime 
When critical conditions are observed on the drop- 

let surface, the liquid-vapour interface disappears. 
Thus, the supercritical regime has to be seen as the 
dilution of a dense, cold pocket in a light, hot environ- 
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Fig. 7. Validity of the “0’ law” in the supercritical case: 
solid line represents the droplet radius squared versus non- 
dimensional time (T, = 100 K, T, = 1000 K, P = 10 MPa). 
Critical transition appears at about t = 0.5 in non-dimen- 
sional time units. Dashed line illustrates that the “0’ law” 

approximates the droplet regression most of its lifetime. 

ment. All the following results concern the dilution in 
a rigorously quiescent chamber, because the “droplet” 
confinement is no longer due to surface tension but 
just due to inertia. Now, defining the “droplet” as 
the sphere where O2 mass fraction is larger than the 
mixture critical O2 mass fraction, we can study the 
regression rate of this pocket. 

As illustration, we present the simulation of “drop- 
let vaporization” in a chamber at 1000 K and 100 
bars. Figure 7 gives the droplet radius squared, 
reduced with its initial value, as a function of time 
reduced with the thermal diffusion characteristic time 
of ambient gas. It can be observed that transition 
occurs at about t = 0.5. After the transition, the drop- 
let radius increases as the consequence of superficial 
thermal expansion. This is due to the fact that thermal 
transfer in dense fluid is more efficient than mass 
diffusion (Lewis number larger than one). It can be 
noticed that the “D* law” is almost satisfied in the 
supercritical regime. 

Furthermore, our results confirm the previous study 
by Sanchez-Tarifa et al. [8] which concludes that the 
concept of droplet can be extrapolated in the super- 
critical regime. The basic reason is the large sensitivity 
of density to temperature in the vicinity of mixture 
critical point. This property implies large gas expan- 
sion and the related convective transport isolates the 
cold pocket from diffusion process. It helps to main- 
tain strong density gradients. This clearly appears on 
Fig. 8 where the radial dependence of the density and 
temperature fields is plotted (the distance from the 
droplet centre has been reduced with the droplet 
radius at t,, the time of transition). 

3.4. Study of lifetimes in both regimes 
We have carried out a parametric study of the drop- 

let lifetime (the droplet is initially at 100 K) for various 
ambient conditions. The results obtained for both 
regimes are reported on Fig. 9 where the dimensional 
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r/n03 

Fig. 8. Density (kg/mj) and temperature (K) profiles as func- 
tion of radial coordinate, reduced by the radius at critical 
instant. The profiles are drawn at t = 3 time units, i.e. in 
the supercritical regime (TO = 100 K, T, = 1000 K, P = 10 

MPa). 

lifetime of a 500 pm radius droplet is plotted as a 
function of pressure, reduced with the O2 critical pres- 
sure (i.e. 50 bars). On Fig. 9 every curve defined by a 
surrounding temperature presents a minimum of the 
lifetime in the vicinity of the pressure given by Fig. 6. 
In what follows this behaviour will be referred as 
“transcritical minimum”. These results are in an inter- 
esting agreement with experimental results of droplet 
combustion obtained in micro-gravity: for the sake 
of qualitative comparison the measurements by Sato 
et al. [2] have been reported in Fig. 9. The agreement 
is just qualitative because the data are concerned with 
combustion of n-octane. Nevertheless, we imagine 
that in such experiments a decisive factor is the mixing 
process of the droplet component with the combustion 
products. 

Furthermore note that far in the supercritical 
regime the droplet lifetime is independent of pressure. 
A more quantitative study of our data at very high 
pressure shows that the droplet lifetime behaves as 
(Tm)-3’4. 

OL I I I I L I I 
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Fig. 9. 1 mm-diameter droplet lifetime (s) vs pressure, 
reduced by O2 critical pressure, for various temperature of 

hydrogen-filled chamber. 
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3.5. Sensitivity analysis 
As mentioned before, our modeling contains several 

weaknesses. It is imperative to check the influence of 
the different hypotheses on our results. Two points 
will be investigated: heat capacity modeling and 
choice of binary diffusion coefficient. Four different 
approaches of the specific heat capacity will be envis- 
aged. The plausible modelings of heat capacity have 
already been the subject of a detailed description in 
Section 2. 

As for the species diffusivity, certainly the most 
badly known physical property, only two ways will be 
compared. As a result, all the available models possess 
the following weaknesses : 

(1) For the time being the modelings proposed in 
the literature do not allow us to continuously connect 
a unique fluid having on the one side the properties 
of a cold liquid and on the other side the properties 
of a high pressure gas. This remark is also valid (to a 
lesser degree) for thermal conductivity. 

(2) Mass transport properties at high pressure are 
usually studied either for self-diffusivity or for binary 
diffusivity of tracers of one species in the other pure 
species. Reliable mixing rules do not seem to exist 
[23] in order to extend these results to dense binary 
mixtures of various composition. 

(3) As pointed out by Umemura [27, 281 species 
diffusivity should have a vanishing behaviour when 
crossing the mixture critical conditions. According to 
our experience, this property would affect the solution 
only during the short time of the transition. Therefore 
it can deeply modify the nature of the transition but 
cannot quantitatively affect the droplet lifetime. 

First of all let us recall what is our modeling of 
reference. C,,, the partial heat capacity in the mixture 
is identified with the heat capacity of the species con- 
sidered as a pure substance. The latter is extracted 
from experimental data [25]. Then we erase from C,,, 
the divergent behaviour in the vicinity of the critical 
conditions of pure component. The latter quantity is 
finally reported in equation (2) for every species. The 
binary diffusivity modeling, supposed as the most 
reliable one, has been mentioned in Section 2 and 
recalled in the Appendix: for the liquid phase the 
Wilke-Chang modification of the Stokes-Einstein law 
and for the gas phase the Wilke-Lee correlation sug- 
gested by gas kinetic theory. This reference modeling 
has been used to estimate the lifetime of a 1 mm- 
diameter LOX droplet in a surrounding hydrogen at 
1000 K. The result is reported on Fig. 10 and cor- 
responds to the solid line curve labelled (a) “reference 
results”. 

In Fig. 10 three other curves (b, c and d) concern 
the departure from the reference in term of sensitivity 
to heat capacity and a fifth one (e) in terms of sen- 
sitivity to binary diffusion, 

Curve (b) : C,,, the partial heat capacity in the mix- 
ture is once more identified with the heat capacity of 

0.2 - 
T_ = lOOOK 

D, = lmm 

0’ / 
0 1 2 3 4 5 6 7 

P/PC 

Fig. 10. Study of sensitivity : droplet lifetime (s) vs reduced 
pressure for four various modelings of mixture specific heat 

and two modelings of mass transport (see text). 

the species considered as a pure substance. The latter 
is again extracted from experimental data [25], but 
reported without modification in equation (2) for 
every species. We call this curve “C,: Rough data of 
pure substance”. 

Curve (c) : C’,, is estimated from theoretical deri- 
vation of partial heat capacities. We recall that this 
estimate is established from the Redlich-Kwong- 
Soave equation of state and intrinsically contains a 
diverging behaviour at the pseudo-critical point. This 
curve is labelled “C, : RKS theoretical modeling”. 

Curve (d) : C, is derived from perfect gas theory. 
This approach is known to only make sense at low 
pressure. This curve is labelled “C, : Perfect gas mod- 
eling”. 

Curve (e) is concerned with the measurement of the 
sensitivity to mass diffusivity. We deliberately choose 
a modeling far from the spirit of the reference one. 
We try to introduce some degree of continuity in the 
following way : inspecting the experimental data of O2 
and H, considered as pure gaseous substance, one can 
notice that Le, the Lewis number, more or less follows 
a temperature dependent rule : Le( T) = (Le), 
(7’/T,)-“25. We decide to allocate this property to 
their mixture. Then the binary diffusion coefficient 
of the mixture is immediately deduced from mixture 
thermal diffusivity. We admit that this modeling is 
however unfounded in the liquid phase. This curve 
is labelled “D : Continuous Lewis number”. 

According to Fig. 10, one notices that the so-called 
transcritical minimum corresponds to a rather robust 
behaviour although the quantitative effects are of the 
order of 30%. Note that the perfect gas assumption 
tends to underestimate heat capacity and therefore we 
are faced with a decreasing of the droplet lifetime as 
a consequence of overestimating thermal diffusivity. 
Note additionally that the curve “RKS theoretical 
modeling” follows the global aspect of the other 
curves. This proves that at every point the mixture has 
never approached the vicinity of the pseudo-critical 
point; if it were the case the lifetime would have 
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Fig. 11. 1 mm-diameter droplet lifetime (s) vs reduced pres- 
sure: comparison with two previous works by Yang et al. 
[19,20] and influence of both definitions (Y, = Y, or T, = T,) 

of supercritical droplet. 

tremendously increased. Despite the roughness of the 
modification in transport modeling, the results glo- 
bally remain in the same range of 30% accuracy. 
Although the transition appears at higher pressure, 
the phenomenon of “transcritical minimum” is pre- 
served. 

3.6. Discussing droplet lifetimes 
At this point it is of interest to compare our results 

with previous works. Three numerical works are avail- 
able in the literature. In ref. [5] the authors give just 
one result corresponding to the lifetime of a 100 pm- 
diameter LOX droplet in a chamber at 100 bars and 
1000 K. Using equation (12) we transpose this lifetime 
of the order of I5 ms to a 1 mm-diameter LOX drop- 
let. Unfortunately the latter value (1.5 s) does not 
have the same order of magnitude than ours (0.5 s). 
There are furthermore two extensive results by Yang 
et al. reported in two papers [19, 201. However, both 
contributions are for us a source of questioning 
because the authors reported twice the same study 
using an apparently identical modeling and reporting 
rather different results. In such a case the most recent 
results are supposed to be the most precise. As a 
matter of fact, our reference results, as shown by curve 
(a) on Fig. 11, are in better agreement with their 
oldest results [19] [reported by curve (b) on Fig. 111, 
especially for subcritical regime. For the sake of a 
better comparison we additionally decide to change 
our definition of the supercritical droplet. As done by 
these authors, we now define the supercritical droplet 
as the loci where the temperature is lower than the 
mixture critical temperature. This new computation 
corresponds to curve labelled “d: reference results 
(T, = T,)” while our previous definition corresponds 
to curve labelled “a: reference results (YS = Y,)“. 
According to this new definition our results present 
the same global aspect than the oldest ones [19] of 
these authors, including the absence of the “trans- 
critical minimum”. The latter property seems however 
exist in their most recent work [20] illustrated by curve 

0.0 1 
0 1 2 3 4 5 6 

P/PC 
Fig. 12. Non-dimensional droplet lifetime, multiplied by the 
density of hydrogen at chamber conditions, with respect to 

reduced pressure for various temperatures of chamber. 

(c), although their data are not of the same order as 
ours. 

We are indeed faced with a large discrepancy 
between the different contributions (see also ref. 35). 
There is more than one order of magnitude between 
references [5] and [20]. Our results agree within a 30% 
range with reference [ 191 as far as we identically define 
the supercritical droplet. On the other hand a rather 
weak perturbation on C, modeling produces the same 
range of precision, as noticeable in Fig. 10. Actually 
it does not seem reasonable to guarantee our present 
results within a range of accuracy better than 30%. 
The discrepancy between the various predictions rec- 
ommends to perform experiments with non reactive 
mixtures [24] substituting for the H2-02 mixture. 

We also conclude from Fig. 11 that the “trans- 
critical minimum” phenomenon is linked to the mix- 
ing definition (Y, = YJ of the supercritical droplet. 
Renouncing to the quantitative point of view, we have 
now to provide us with physical interpretations. 

4. PHYSICAL INTERPRETATION 

Starting from the same results as those of Fig. 9, 
the lifetime is first transformed in non-dimensional 
form by dividing by 2,. Then this quantity, multiplied 
by pm the density of the initial environment, is 
reported on Fig. 12 with respect to the reduced pres- 
sure. An interesting overlapping of the related curves 
appears as soon as the ambient temperature is large 
enough (say 1000 K). This property becomes striking 
at low and high pressure. In what follows, this is 
interpreted as the consequence of the quasi-steadiness 
that we have observed for both regimes. 

As suggested by our results we assume that a sharp 
density gradient exists in the vicinity of r,(t), the 
instantaneous droplet radius (whatever the definition 
of the droplet radius we have selected in the super- 
critical vaporization regime). Therefore, for r < 
(1 --~)r,(t) there is a dense phase, at rest, close to the 
liquid state while for r < (1 +~)r,(t) the density is 
that of a high pressure gas. If we perform the following 
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change of variable Y = ur,(t) that makes the “inter- 
face” fixed, mass conservation law, equation (5), can 
be rewritten in spherical geometry as [36] : 

+$ $4 (0) + f ; 
b 

[u+u~)]= 0. (15) 

Integrating equation (15) from 1 --c to 1 fc and 
assuming E << 1, it is straightforward to derive the 
following conservation condition : 

(1 -F)IPllq 2 = (1 +c:)-p,,&:, ,,,) (16) 

in which we let I),,~, the fluid velocity in liquid phase, 
equal zero. Moreover dr,/dt, the interface regression 
velocity, has been neglected compared with u,,~, the 
velocity in gas phase. For vanishing F, equation (16) 
is nothing but equation (6) written with both latter 
assumptions. Furthermore quasi-steadiness implies 
that the time scale in gas phase is short compared with 
the droplet lifetime. Therefore dimensional analysis of 
the problem restricted to gas phase gives, as previously 
discussed, the following dependence : 

Gap = [K/r,(t)]y’(nz,n,. ,./;.fz..f;. .) (17) 

where Y does not depend on time. Hence, neglecting 
E compared with 1 in equation (16) we obtain the 
expected “D? law” : 

(18) 

Integration of equation (18) provides us with a rough 
estimate of droplet lifetime : 

(19) 

Assuming, as in equation (13), that Y is a slow varying 
function, we are now in a position to interpret the 
results of Fig. 12 where the non-dimensional lifetime 
depends in inverse ratio to pressure. This behaviour 
is contained in the ratio of both densities in equation 
(I 9) because pllq is quasi-constant with respect to pres- 
sure. Furthermore, remark that the product pvap~ is 
more or less independent of pressure. Consequently. 
when quasi-steady regime is reached, the droplet life- 
time becomes independent of pressure. This can be 
observed in Fig. 9 at low and high pressure, where 
droplet lifetime tends to be constant vs pressure. 
Additionally, the quantity pvap~ has the same depen- 
dence on temperature as the thermal conductivity. For 
gases as oxygen and hydrogen, it is of the order of 
T’:4. This brings forward an explanation of the depen- 
dence of (TZ))3r4 of the droplet lifetime, observed at 
the highest pressures on Fig. 9. 

At this point, let us recall that equation (19) just 
refers to thermal diffusion and completely forgets 
mass transport. It is then quite surprising that our 
numerical results can be interpreted only in terms of 
this equation. One way to understand this fact is to 

0.3:,““““““““‘,“““““““‘1 , 3 
0 5 10 15 20 25 30 35 

nondimnsionallime 

Fig. 13. Instantaneous droplet radius vs reduced pressure, 
for both definitions of supercritical “droplet” radius (Y, = Y, 
or T, = T,). for two pressures of chamber (P = 7 MPa and 

P = 10 MPa). 

remark [32] that quasi-steady assumption implies that 
vaporization rate is controlled by heat and mass 
diffusion processes in the far field where the fluid is 
light. Therefore, thermal and species diffusion being 
ofthe same order [Le = O(l)], equation (19) can hold. 

Let us now discuss the so-called “transcritical mini- 
mum”. On the one hand, the fact that the droplet 
lifetime decreases as pressure increases towards the 
mixture critical pressure, is classically explained by 
putting forward equation (13) combined with equa- 
tion (14). Remember that the quantity (m*L) is van- 
ishing close to the critical point and therefore the 
Spalding number is increasing. On the other hand, it is 
clear that in the concerned pressure range the unsteady 
effects could not be ignored. When crossing the critical 
conditions the vaporization process is indeed highly 
unsteady because we switch from subcritical to super- 
critical regime. We have drawn on Fig. 13 the instan- 
taneous droplet radius according to both definitions 
and for two values of pressure. It is noticeable that 
when transition occurs the radius is considerably 
enhanced when “interface at Y, = Y,” is the chosen 
definition. Note additionally that “interface at 
Ts = T,” leads for both pressures to a smaller radius 
than the one when “interface at Y, = Y,” is selected. 
This is a consequence of the fact that in a dense fluid 
thermal diffusion is more effective than mass diffusion 
(Lewis number larger than one). Then, the former 
increase of radius is due to the expansion of the fluid 
included between the “interface at TS = T,” and the 
“interface at Y, = Y,“. When transition occurs at the 
beginning of the droplet life (i.e. at high pressure), 
the vaporization lifetime, based on the mass diffusion 
process summarized with equation (19) is increased, 
while the thermal diffusion process is not affected. As 
a result of this analysis, we have suggested a reason 
for the qualitatively different behaviours observed 
according to both definitions of the supercritical drop- 
let radius, leading to a mixing time larger than the 
heating time. 



High pressure vaporization of liquid oxygen 3463 

However, because the initial droplet enhancement 
is less important when pressure increases, the above 
argument is not suhicient to completely explain our 
results. Why does the lifetime keep on decreasing (vs 
pressure) when the definition of the droplet surface 
is the T, isotherm, while the lifetime continuously 
increases when the definition of the droplet surface is 
the Y, contour level? To propose an answer for this 
issue, we consider now a cooperative additional effect 
suggested by thermodynamics of high pressure 
mixtures. Coming back to Fig. 1, we note that, as the 
pressure increases, the critical conditions are such that 
T, and Y, decrease. Thus, the critical conditions are 
closer to the initial droplet temperature (I’, = 100 K). 
Consequently, when the definition of the droplet sur- 
face is the I’, isotherm, the higher is the pressure, the 
easier is the “vaporization” considered as a heating 
process. Conversely, if the “interface at Yz’ is chosen, 
the droplet conditions (Y = 1) go away from the criti- 
cal conditions when pressure increases. The latter 
effect delays the “vaporization” considered as a mix- 
ing process. 

Both cooperative arguments provide us with a 
coherent frame making clear the behaviour we have 
called the “transcritical minimum”. 

5. CONCLUSIONS 

The topic of this numerical study is the vaporization 
of a liquid O2 droplet in presence of an ambient, 
quiescent H, gas at high temperature and high pres- 
sure. The complete analysis of the problem (trans- 
portdiffusion in both phases) has needed the res- 
olution of the time-dependent conservation equations 
(mass, species, energy). Although our model tends to 
faithfully represent physical properties of the OS-H2 
mixture at high pressure, it contains an important 
amount of inherent weaknesses. Nevertheless a sen- 
sitivity analysis has shown that the qualitative aspects 
of our results present a sufficient degree of robustness. 

For the subcritical regime, modifications induced 
by high pressure study show that the classical Spal- 
ding-Godsave estimate furnishes a droplet lifetime 
twice as large as our results. We show that the vapo- 
rization process can remain subcritical although the 
chamber pressure is much larger than the O2 critical 
pressure, as indicated on Fig. 6. As we approach the 
critical conditions, weakly singular behaviour of the 
regression rate can appear. However the present study 
just mentions this phenomenon because its appear- 
ance depends on the selected model of physical proper- 
ties. As for the supercritical vaporization, the concept 
of droplet is preserved because a strong density gradi- 
ent exists. This is due to the extreme sensitivity of 
thermal expansion coefficient in the vicinity of the 
critical conditions. Therefore, in this zone, rapid gas 
expansion produces Stefan flow that tends to isolate 
the cold “puff “. 

According to the “mixing” definition of super- 
critical droplet surface (we set Y, = Y,), the droplet 

lifetime presents a minimum for the pressure values 
given by the curve on Fig. 6. We have called this 
property as “transcritical minimum”. At high tem- 
perature, the pressure value is close to the critical 
pressure of the droplet component (here 0,). This 
result is in qualitative agreement with experimental 
results on combustion of hydrocarbon droplets [ 1, 2, 
21, 221. However, if the “heating” definition of the 
supercritical droplet is chosen, the transcritical mini- 
mum disappears and the lifetime is a decreasing func- 
tion of pressure. 

The present study also gives some credit to the 
classical “quasi-steady” assumption as long as the 
pressure is far from the transcritical value. In Section 
4 we have proposed a dimensional analysis using this 
assumption. It leads to the “D' law” at low and high 
pressure as it has been observed in our numerical 
results. Furthermore it provides us with high pressure 
estimates of droplet lifetime, equation (19), that 
explain the following results: at high pressure the 
droplet lifetime is independent on pressure and 
depends on temperature of chamber as : 

Lastly, we propose a physical interpretation of the 
“transcritical minimum”. At moderate pressure, it is 
well established [31, 331 that the droplet lifetime is a 
decreasing function of pressure. For explaining the 
increase at higher pressures, we put forward two coop- 
erative arguments. The first one is of thermodynamic 
origin [Fig. l] : when pressure increases, the thermal 
state of the liquid contained in the droplet becomes 
nearer to the thermal state required for vaporization. 
However, if we now consider the state in term of 
composition, the liquid goes away from the com- 
position necessary to vaporize. The second one is 
related to the fact that in dense gas mass diffusivity is 
lower than heat diffusivity. This allows the fluid 
located between T = T, and Y = Y, to thermally 
expand. Consequently, when the “mixing” definition 
of the droplet is selected, a larger droplet radius is 
measured. In the supercritical regime, the rate of mix- 
ing thus diminishes when pressure increases, because 
mass diffusion starts with a larger “initial” radius. 
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APPENDIX 

Table A 1. Estimate methods for mixture thermodynamic transport properties 

Property of pure species Method Mixing rule 

Liquid specific heat Experimental data fit [25] 
Theoretical derivation from Soave EOS l261 

Mass fraction weighting 

Gas specific heat 

Liquid viscosity 
Liquid thermal conductivity 
Gas thermal conductivity 
Liquid mass diffusivity 
Gas mass diffusivity 

_ - 
Experimental data fit [25] 
Theoretical derivation from Soave EOS [26] 
Experimental data fit [25] 
Experimental data fit [25] 
Experimental data fit [25] 
Wilke Chang [23] 
Wilke and Lee [23] 

Mass fraction weighting 

Mathur et al. [29] 
Mathur et al. [29] 


